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Abstract. We examine the influence of an anisotropic interaction term of Dzyaloshinskii—
Moriya (DM) type on the ground state ordering of tig-J> spin-% Heisenberg antiferromagnet

on the square lattice. For the DM term we consider several symmetries corresponding to different
crystal structures. For the putha—J> model there are strong indications for a quantum spin
liquid in the region of 04 < J2/J1 S 0.65. We find that a DM interaction influences the

breakdown of the conventional antiferromagnetic order by (i) shifting the spin-liquid region,
(ii) changing the isotropic character of the ground state towards anisotropic correlations and
(iii) creating for certain symmetries a net ferromagnetic moment.

1. Introduction

The two-dimensional quantum spin Heisenberg antiferromagnet (AFM) has attracted a
considerable interest in connection with the magnetic properties of the high-temperature
superconductors [1]. The CuO planes responsible for the superconductivity show a strong in-
plane exchange and only a small out-of-plane exchange [2]. Therefore in the insulating phase
the interacting Cu spins should be well described by a two-dimensiona%sldieisenberg
antiferromagnet. There are several arguments [3—6] that additional to the nearest neighbour
exchange/; a frustrating diagonaJ, bond is relevant. The ground state properties of this
so-called/;—J, model have been widely discussed in the last years, mainly with respect to a
possible breakdown of the magnetic long-range order (LRO) due to the combined influence
of quantum fluctuations and frustration [7—17]. One finds evidence for a finite parameter
region around//J; ~ 0.5 where quantum fluctuations make possible a spin liquid phase.
Moreover, there are indications of enhanced exotic order parameters (spin-Peierls, chiral)
[8,10,14,18,19].

However, there are also indications for additional anisotropic terms in the Hamiltonian
which could explain the experimentally observed weak ferromagnetism for instance in
La,CuQOy [20,21]. In general, a small ferromagnetic moment in antiferromagnets may
appear in materials with low crystal symmetry. This tilting of the spins can be described by
adding the so-called anisotropic Dzyaloshinskii-Moriya (DM) interaction to the isotropic
Heisenberg model. In 1957 Dzyaloshinskii formulated a phenomenological theory of these
facts [22]. Three years later Moriya developed the microscopic theory of the weak
ferromagnetism [23]. The occurring additional interaction term in the Hamiltonian is
proportional to the DM vectoiD. In some recent publications [24—-28] one has examined
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the origin and the structure dD. In this paper we discuss the influence of DM terms on
the ground state properties of thig-/, model on the square lattice.

2. Anisotropic spin interaction

Let us start with a general Hamiltonian, describing quadratic spin—spin interaction:
A N A
H=Y" 5738 1)
i,j=1

with J; ; being a 3x 3 matrix of interaction, which can be written as
J=1sphHi+A+m )

wherel is the unit matrix,A is antisymmetric andi is symmetric and traceless. With (2)
equation (1) reads:

N
H= )" (3(8pJ; )8iS; + Di ;(Si x S)) + S M, ;S)) ®
i,j=1

where the first term is the isotropic Heisenberg interaction, the second one the
Dzyaloshinskii—-Moriya interaction and the last one the anisotropic pseudo-dipole interaction.
The vector D; ; contains the three independent componentsAQj. In general the
occurrence ofD; ; requires low crystal symmetries. The origin of the anisotropic interaction
D;; and I\A/I,-,J- is the spin—orbit coupling. In the last few years there has been some effort
concerning the question of including the term wl@h,j in the calculations [29], but in

what follows we neglecf/l,»,j, because it is only of second order in the spin—orbit coupling
constant. whereasD; ; is of first order ina.

The weak ferromagnetic moment in the predominantly antiferromagnetic ordered CuO
planes in LaCuQ, can be interpreted with a small spin canting. This spin canting could be
described via a DM interaction term. In [24] a general form of the DM vector is introduced
and it is shown, that only a vectdd; ; which varies from bond to bond corresponds to
the crystal structure and is able to describe the observed weak ferromagnetism. In [24, 25]
Coffey and coworkers consider different crystal symmetries andIgst for the whole
lattice by requiring for the vectoD; ; that the energy of any configuration of spins is
invariant under the symmetry transformations of the crystal structure. ®ngeis fixed
on a single bond, the symmetries determilg; on the entire lattice.

Following [24,25] we consider in this paper two different symmetries 10y ;
which correspond to the orthorhombic and tetragonal phases @U@, [30-32]. The
arrangements of the atoms in a CuO plane are presented in figure 1. For the orthorhombic
arrangement (figure 1(a)) one finds the followihy ;:

Dy g = (d1,d2, 0)

Dy .c = (—dz, —dy, 0)
Dpp=-—Dyc = (d2,d,0)
D¢ p=—Dyp=(—d1,—d2,0)
D¢ g =—Dyc = (d,d1,0).
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For the tetragonal arrangement (figure 1(b)) g; is as follows:

Dy =1(0,d1,0)

Dyc=(0,dz,0)

Dgp=—-Dyc=(0-dz,0

D¢ p=—Dysp=(0,—d,0)

Dcg=—Dyc=(0,-dz0).
Furthermore we will distinguish between equal and different signs of the parardetansl
d,. Following the arguments of [24] we will restrict our considerationgitandd, of equal

strength. Let us define four different cases for the parameters: orthorhombic symmetry with
eitherd; = +d, or dy = —d, and tetragonal symmetry with eithéf = +d, or di = —d>.

Figure 1. The orthorhombic (a) and tetragonal (b) arrangements of the CuO octahedra taken
from [24]. The filled circles are the copper sites which carry the spins, the open circles are
oxygen sites, which are tilted up out of the plane and the crossed circles are oxygen sites, which
are tilted down out of the plane. The square represents one tilted CuO octahedron. The points
A-E denote certain copper sites used in the text. The arrows show one particular arrangement
of the DM vectorD; ; for this lattice (cases la and lla, see table 1).

First let us consider the classical Hamiltonian

N
Hpu = Z D, ;(S; x S)) 4)
i,j=1
with the configurations forD; ; as given above. S; and S; are classical 3D vectors
and the summation runs over nearest neighbour bonds. The classical ground state of (4)
was discussed in detail in [24]. Here we briefly summarize some ground state features
which are relevant for the further discussion. The energy of any nearest neighbour
bond (i, j) on the lattice can be minimized by spin vectds and S; perpendicular to
each other and perpendicular to the DM veciOy;; the corresponding optimum bond
energy isk;; = —|Dij|SZ. Because of the special symmetigy| = |d2| there is no
frustration in the Hamiltonian (4) and the total ground state configuration can be built by
the suitable arrangement of optimized bonds. In table 1 we present some important ground
state features for the considered four different casd9,0f Here FM means ferromagnetic
moment and 2 SL or 4 SL means two or four sublattices, respectively. As an example the
ground states for the cases la and Ib are illustrated in more detail in figure 2. In the next
section we turn to the quantum system.
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(a) (b)

Figure 2. The classical spin configurations for the Hamiltonian (4); (a): case la with a four-

sublattice configuration and without a net ferromagnetic moment, (b): case Ib with a two-
sublattice configuration and with a net ferromagnetic moment. (All spins are aligned either
along thez axis or in thexy plane.)

Table 1. The four considered cases with some of the ground state features of the classical DM
HamiltonianHpy,.

Case Crystal structure DM vector Net FM  Spin configuration
la Orthorhombic dy=+do=d No 4 SL
Ib Orthorhombic di=—-dy=d Yes 2 SL
lla Tetragonal dy=+do=d Yes 2 SL
lb Tetragonal di=-d,=d No 4 SL
3. The model

We start with the so-called;—J, model on the square lattice:
N
Hpp, =) Ji(SiSite + SiSity) + J2(8iSivary + SiSi—aiy)- (5)

i=1
S; denotes the spié-operator on sité andx andy are the unit lattice vectors in andy
directions.

An intensive investigation over the last years [7-17] suggests the following phase
diagram. For small values af,/J; the system shows AFM-LRO. At some critical value
JZC”"/Jl of about 0.4 the conventional collinear AFM-LRO breaks down. Then a region of
a spin-liquid state could be realized fod0< J,/J1 < 0.65. For values of/,/J; 2 0.65
an AFM-LRO arises within the initial sublattices (four-sublattice AFM).

Now we add the Hamiltonian of the DM interaction

H= |:|11,J2 + |:|DM (6)
N
Hpu = Z[Di,i+w(5i X Siyz) + Diiyy(Si x Siy)]. (7)
i=1
Using spin-flip operators we can rewrite the DM term
D; ;(Si x Sj) = 3{iD5[S; S — S} 87 — S7S7 + 87S}]
—D}[S7S; — S7ST — S8+ 87871 +iD;[S7 ST — 57 ST1). 8)
The HamiltonianHp,, contains terms of the forrﬁfsj? which do not commute with the
z component of the total spi§. Hence we have to takall 2V Ising states for the
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construction of the wave function. We use a modified Lanczos procedure to calculate the
ground state of the system.

4. Numerical results

Based on the properties of the puve-J, model we discuss several order parameters,
[8,11, 14], which describe the relevant magnetic properties of the model.

For dominating J; the corresponding antiferromagnetic LRO parameters are
the components of the square of the staggered magnetization:

1 Y 2 1 forieA
) <(N;lt)> yeEnne K {—1 forieB ©)

whereS! is they component of the spin on site 7; is the corresponding staggered factor
and A and B are the two sublattices. Obviously these parameters describe the ordinary
two-sublattice antiferromagnetic ordering.

For dominatingJ/, the relevant order parameters are

1 N/2 2
2
(M? )2 = <<N/225fr,,a> > y=x,,2 T = %1 a=A,B.  (10)
The sum runs over the sites of the sublattiee These order parameters describe
antiferromagnetic orderingithin the two initial sublatticegt and B, when the whole system
forms a four-sublattice AFM. For the rotational invariant model without DM interaction the
x, y and z components of the respective parameters are identical, but the DM interaction
breaks this rotational symmetry.

For D # 0 a weak ferromagnetism may occur. The relevant parameters for describing
this weak ferromagnetism are the components of the square of the magnetization,

(M) = <( ZSZ) > y=xy12 (11)
N i=1

Obviously Y~ (M?)? is the expectation value of the square of the total §/Sif).

In the pure model D; ; = 0) the Hamiltonian (6) commutes with? and $° and the
ground state is isotropic witl$? = 0 (and consequentlyM?)? = 0). If we now put on
the anisotropic DM interactionIy; ; # 0) the Hamiltonian does not commute wis?
and we may expectM”)? # 0. Koshibaeet al [27] pointed out that anisotropic spin
correlations are a result of the interplay between quantum fluctuations and the anisotropic
DM interaction. This can be illustrated as follows. Consider a classical spin system without
DM interaction and a collinear spin structure. The DM term contains the cross product of
the spins so it vanishes. If now the quantum fluctuations are put on, the DM interaction
favours the direction of spin fluctuations with minimal energy. Of course this direction
depends on the DM vector but additionally on the classical collinear structure.

We have calculated the ground state for a square lattice Mith 16 andN = 20 sites
for the four different configurations of the DM vector given in table 1. In the following
we focus our interest on the orthorhombic symmetry, since this symmetry is valid for
low doping in La_,Ba,CuQ, [32]. Furthermore we present the data f¥r= 20. The
corresponding data foN = 16 are qualitatively the same. For simplicity we pit= 1
for the rest of the paper.

First we consider the situations df = 0 and of J, = 1. Then the isotropic model
(D;,; = 0) is collinear long-range ordered with either a two-sublattice structire=(0) or
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a four-sublattice structure/§ = 1). The influence of the DM interaction on the magnetic
order parameters is shown in figures 3 and 4.

Figure 3 shows the different components of the ferromagnetic morig#? as a
function of the DM interaction fot/> = 0. The results are as follows. The DM interaction
causes a small ferromagnetic mome(#{)? # 0) which increases witkd. This moment
is anisotropic: (M?)? > (M*)2. The ferromagnetic moment is maximal for case Ib which
is in accordance with the classical situation (see table 1). We have calculated the same
parameters fo, = 1. In that case the classical structure is a four-sublattice AFM, which
does not have a net ferromagnetic moment. Consequently we find in the quantum case that
the ferromagnetic moment is about ten times smaller than thabfer O.

0.03 4
ioe0o e y=Xy
(M'y)ezx&ﬁﬁﬁﬁ y:z a
z
0.02 - o
E *’/
x 0
3 // /O//
0.01 - * A7
3 // /6’
E * R
/,}// /0/ W./‘k
P e
E ‘,//e///e /ACA/,,_W
R s e o censtt— ‘
0.0 0.2 0.4 /06 0.8 1.0
d/Jy

Figure 3. Thex, y andz components of square of the magnetizatias” )2 versusd/J; for
case la (full line) and case Ib (dashed line) fér= 20 andJ, = 0.

In the next two figures 4(a) and 4(b) we present the different components of the AFM-
LRO parameters. FaoJ, = 0 the two-sublattice AFM-LRO paramete¢a?} )2 have to be
considered and for, = 1 the four-sublattice AFM-LRO parametefaf],)? are relevant.

As discussed above the anisotropy depends on the DM végterand on the underlying
magnetic structure. Correspondingly the anisotropy is changed going from O to

Jo =1 or, alternatively, going from case la to case Ib. Furthermore, in dependence on the
symmetry of the DM vector, we can observe either an enhancement or a suppression of a
certain component of the antiferromagnetic order parameter. For instangectimponent

of the four-sublattice AFM-LRO paramet«éMfga)2 is enhanced by the DM interaction if

D, ; favours a classical four-sublattice structure (see figure 4(a)) whereas the same order
parameter is suppressedlif; ; favours a classical two-sublattice structure (see figure 4(b)).

The comparison of the magnitude of ferromagnetic and antiferromagnetic order
parameters (figures 3 and 4) shows that the ferromagnetic moment remains small even
if the DM interaction reaches the same strength as the exchange coupling.

Let us now discuss the antiferromagnetic order parameters in dependence on the
frustration parameter,/J;.  For this we select from figure 4 in each case the
dominating componenig\!)? and(M!,)?. The magnetic order fab; ; = 0 is determined
by the competition betweed; and J,. For dominatingJ; and for dominatingJ/, the
magnetic structure is collinear antiferromagnetic with two or four sublattices. The transition
between the two phases is in the classical cask at %Jl and may be connected with a
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Figure 4. The two-sublattice AFM-LRO paramete(rztflf)2 for J> = 0 (full lines) and the four-
sublattice AFM-LRO parametergi?,)? for J, = 1 (dashed lines) versus/J; for N = 20;
(a): case la, (b): case Ib.

spin-liquid phase in the quantum case. Since the DM term also favours a two- (case Ib)
or a four-sublattice structure (case la) we expect that this competition is influenced if we
put on the DM term. The result should be a shift of the transition either to lower or higher
values ofJ,.

As shown in figure 5 we find indeed the expected shift, it is in particular strong for
case la. As discussed above, the critigafor the pure modelD; ; = 0) is about/, ~ 0.4,
which is too large to be realistic for the cuprate superconductors. We conclude that a DM
interaction of this symmetry is able to support the breakdown of the antiferromagnetic long-
range order due to frustration and to shift the criti¢alto more realistic values. (Notice,
that the abruptness of the change in the order parameters seen in figure 5 as well as in
figure 6 is due to the well-known level crossing for tNe= 20 lattice [8, 10].)

Finally we will discuss the region of a possible spin liquid in more detail. As pointed
out in [8, 10, 14, 18] there are two interesting candidates for unconventional non-collinear
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Figure 5. The dominant two-sublattice AFM-LRO paramete(ri!zl.%’)2 (full lines) and the
dominant four-sublattice AFM-LRO parameterd ,)? (dashed lines) versuk/J; for N = 20
and different values off; (a): case la with(M; *)? and (M3 ,)?, (b): case Ib with(47)? and
(M)

ordering in this region. One is a vector chiral order parameter introduced in [10, 14],

1/1 & ?
CY = <3 <2N ;(Ci),/i+w,i+a:+y - Ci),/i+m+y,i+y)> > (12)
C!, = 8e,[(Si x S)) + (S; x ) + (S x S)]. (13)

This order parameter measures the handedness of a plaquette of three spins. For the isotropic

Heisenberg system this parameter is the same for all three componentndz. But in

our case of anisotropic DM interaction the different components may have different values.
Another candidate for exotic ordering is the dimer (or spin-Peierls) order parameter,

1 N ) 2
D= 2<N ;_1) ss) (14)

which measures the long-range phase coherence of spin dimers (singlets of two spins) along
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Figure 6. Exotic order parameters versus/J; for differentd. (a) The dominant chiral order
parameterC*-> for case la (solid line) and’* for case Ib (dashed line) fav = 20. (b) The
dimer order parameted for case la (solid line) and case Ib (dashed line) Soe= 20. (c) The
dominant chiral order parametér*-> for case la (solid line) and’* for case Ib (dashed line)
for N = 16.

the x (or y) direction.

In figure 6 we present these parametéts and D, where we have selected the
largest component of. Both order parameters show in the pure model a characteristic
maximum at about/, = 0.55. The influence of the DM interaction is twofold. First
the maxima are shifted in the same way as discussed for figure 5. Second the maxima
are suppressed particularly f@r. The suppression of the maximum i can be simply
understood by having in mind that the dimer ordering is connected with a singlet ground
state which is obviously not realized fd@, ; # 0. On the other hand, the effect of the DM
interaction on the chiral order parametg¥ seems to be more complicated. The DM term
creates a spin canting which might under certain circumstances support the realization of a
vector chiral ordering. Indeed, we found one examp¥e={ 16, d; = +d, = 0.3), where
the chiral order parameter is enhanced in a small region ardgrd0.4 (figure 6(c)). Here
the DM interaction term together with the frustratidg causes some canted ground state
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with enhanced vector chirality. However, it remains unclear whether this increasé isf
an artefact of the particular cluster symmetryNof= 16.

5. Summary

The magnetic properties of the—J, model with anisotropic Dzyaloshinskii-Moriya (DM)
interaction are determined by the competition between terms favouring a collinear two-
sublattice AFM and terms favouring a collinear four-sublattice AFM. The former one is
stabilized by the/; term and the latter by thé, term. The DM term may favour the two-
sublattice structure as well as the four-sublattice structure in dependence on the symmetry
of the DM vectorD; ; (see table 1 in section 2). As a result the DM interaction shifts
the spin-liquid region (which separates the two collinear antiferromagnetic phases for small
and largeJ,) to larger or smaller values of,. Because the criticals"" ~ 0.4 for the
breakdown of the two-sublattice LRO in the pure modB); { = 0) is much larger than
realistic J, values for cuprate superconductors [4—6] additional mechanisms are needed to
shift the transition to smaller values @f. Recently it has been shown [14] that static holes
simulating doping can shiffs""* in the desired direction. In this paper we find that a DM
term with suitable symmetry acts in the same direction. In orthorhombic symmetry a DM
vector with identicalx andy components (case la in table 1) is appropriate to weaken the
two-sublattice antiferromagnet and to realize lowgf".

Besides the shift of the transition region the DM term creates an anisotropy in the
spin correlations. Which components are enhanced and which are suppressed is a result of
the interplay between quantum fluctuations, the particular symmetry of the DM vector as
well as the underlying magnetic structure of the pure model. Hence it occurs that for the
two-sublattice AFM another component is favoured than for the four-sublattice AFM.

The third remarkable effect of the DM interaction is the appearance of a weak
ferromagnetic moment. For the considered finite lattices this moment occurs for all
symmetries ofD; ;. In accordance with the classical picture the orthorhombic structure with
differentx andy component ofD; ; (case Ib in table 1) yields the strongest ferromagnetic
moment and might indicate the existence of weak ferromagnetism in the thermodynamic
limit just for this symmetry ofD, ;.

Finally we analysed exotic dimer and vector chiral order parameters showing a
characteristic maximum in the spin-liquid region. This maximum is in general suppressed
by the DM term.

Besides the most important orthorhombic symmetry considered in the paper we have also
calculated the magnetic quantities for the tetragonal symmetry (figure 1(b) and table 1). In
principle the same scenario as for the orthorhombic symmetry is valid, namely in dependence
on the strength and the symmetry of the DM vecidy; we may have anisotropy in the
spin correlations, a net ferromagnetic moment and a shift of the spin-liquid phase.
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